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Remote Sensing in UV/VIS/NIR

 Measurements of ozone depletion, air quality, and
climate can be measured by observing reflected
radiation from the surface or scattered radiation from

atmosphere.

 Measurements in NIR (700 nm to 2.5 microns)
- CO,, CO, CH,, H,0O; climate, air quality, and transport

— O, A; cloud heights, s/c pointing, and temperature/pressure
profiles with sufficient spectral resolutions.

e Constituents observable from 270 to ~650 nm are the
subject of this talk.



Reflected/Backscatter radiation retrievals

For ozone, which is optically thick (UV), cross sections and

iInstrument calibration are main sources of errors. Forward models
are very accurate.

For optically thin gases, spectral fitting of measured radiances,
compared to cross sections yields slant column amounts.

— Slant column amounts ~ absorption of solar photons from the top of the
atmosphere back to space instrument.

— Air mass factor needed to convert to vertical column amounts for nadir
measurements.

— Spectroscopic errors become less important compared to forward model and
retrieval errors.

— Interference from strong absorbers (ozone) and Ring effect (reflected
Fraunhofer lines) must be accurately accounted for.

— Instruments need high S/N (>2000) and very good wavelength calibration.
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UV/VIS/NIR satellite spectrometers

Instrument Wavelength Viewing Gasest Year
(nm) geometry

TOMS 300-380 nadir O5, Column 1978

SBUV/POESS 250-405 nadir O, Column and profile 1978

POAM 350-1060 occultation O3, NO2, H,O 1993

GOME (GOME-2) 240-790 nadir Qs, NO., BrO, OCIO, S0O,, HCHO, H.0O 1995 (2005)

ODIN/OSIRIS 280-800 limb Q., NO,, BrO, OCIO, SQ,, HCHO, H.O 2000

SAGE Il 280-1040 occultation 04, NOs, BrO, OCIO, H,O, NO. 2001

(limb)

GOMOS/Envisat 250-952 stellar Os, NO;, H.O, NO4 2002
occultation

SCIAMACHY/Envisat nadir/limb/ O3, H:0, NO3, NO;, N:O, CH,, CO, CO3, 2002
occultation BrO,

OMI/Aura 270-500 nadir 0., NO,, BrO, OCIO, S0O,, HCHO 2003

MAESTRO /ACE 285-1030 occultation O,, NO,, BrO, OCIO, SO,, HCHO, H.O 2003

ODUS/GCOM 306-420 nadir 05, NO., BrO, OCIO, S0O.,, HCHO 2006

OMPS/NPOESS 250-1000 nadir/limb O3, NO., BrO, OCIO, S0O., HCHO 2010

T H:0 is measured in the visible and infrared.
T Additional species are measured in the infrared.




Ozone Monitoring Instrument (OMI) - Aura

Instrument characteristics

* 114 Telescope FOV (2600 km)

Telescope

13X24 km IFOV

Two channel hyperspectral spectrometer
UV: 270-380 nm
VIS: 350-500 nm

Visible channel

1.0to 0.45 nm FWHM

2-3 samples per FWHM

TNO - TPD



GOME-2 — Metop

Instrument characteristics
e Scan mirror swath is >960 km
e 40X80 km IFOV
» Four channel hyperspectral spectrometer
CH1: 240-315 nm
CH2: 309-403 nm
CH3: 401-600 nm
CH4: 590-790 nm
e 0.28to 0.5 nm FWHM

e >2 Samples per FWHM
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Detecting an ozone recovery requires a
consistent observing system
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O, Spectroscopy

Agree with J. Orphal [2001] that B&P
Cross sections are acceptable and
should be used by all space missions.

Wavelength scale should be adjusted
according to Edlén [1966], with an
additional +0.015 nm shift.

Bogumil et al. [2000] should be
published (corrected to B&P) for
wavelengths range 340-790 nm.

Up to date measurements are planned
in US (NIST) and France (NPM) using
FTS:

— 240-1000 nm @ 0.001 nm

— 200° to 300°

— <2% accuracy
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NO, observed in stratosphere and
troposphere

un E3A GOME ND,

* NO, is important gas in stratospheric
chemistry, air quality in troposphere.

« GOME instrument detects global
seasonal variation and pollution hot
spots.
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Figure 2.2 3-Day Composite af GOME NO; in
April 1008, Scale as Figure 1.



NO, Spectroscopy

Vandaele et al. [1998] should be
used as primary standard.

Some uncertainty in wavelength
calibration (0.0012 nm) because
of air to vacuum conversion.

3% intensity uncertainty might
be improved.

Instrument builders opt to
measure NO,, with flight unit to
test ITF (slit functions).
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HCHO Observations from space

HCHO is intermediate in oxidation
of hydrocarbons in the troposphere,
providing an important indicator of
biogenic activity.

Top, (a) Vertical column of HCHO
from GOME measurements over
North America for July 1996;

Bottom, (b) Modeled result from the
GEOS-CHEM 3-dimensional
tropospheric chemistry and transport
model (July, 1996).
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HCHO Spectroscopy

Cantrell et al. [1999] are adequate
for current space applications.

5% uncertainty with temperature

dependence of 5% in troposphere.

Uncertainties are negligible
compared to other errors, e.g., air
mass factors.
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BrO observations from space

BrO is a strong source of O,
destruction in the stratosphere.

BrO is measured globally by GOME.

Enhanced tropospheric BrO has
been observed over the Arctic and
Antarctic ice pack in the polar spring.

Quantifying tropospheric BrO from
nadir (GOME, OMI) measurements is
difficult due to the effect of Rayleigh
scattering on air mass factors.

Br( Total Column from GOME: April 30 — May 2, 1997 (0"—00°HW)
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BrO Spectroscopy
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e Wilmouth et al. [1999] are excellent I ]
for present applications. o ]
ol :

* Measured at two temperatures. 107 - 5
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OCIO Spectroscopy

« Wahneretal. [1987]areadequate. [T T T T T T T I T TTTT
Measured in air at three - -

temperatures.
003 ol

e Should eventually be re-measured in | i

vacuum, with an FTS. i |
"¢ .002

 Cross section errors are small I ]

compared to other retrieval errors. o
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SO, observed in stratosphere and
troposphere

TOMS has detected and mapped large
Volcanic events since 1978 using
wavelength channels designed for ozone.
S/N not suitable for SO, tropospheric
detection.

Spectral fitting (DOAS) techniques takes
advantage of multiple wavelengths to
improve S/N allowing tropospheric amounts
to be retrieved.

OMI SO, algorithm will take advantage of
spectral fitting with R/T model.
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SO, Spectroscopy

Hearn and Joens [1991] are barely
adequate (300°).

McGee and Burris [1987] have
better resolution and measured at
295° and 210o.

Measurements need to go to higher
wavelengths, 327 nm, at multiple
temperatures, to cover retrieval
window.
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Cloud top heights from O,-0O,

Cloud top heights needed for

accurate total ozone retrievals.

Column density of O2-O2 is
related to cloud top heights

Cloud top heights can be used

for tropospheric ozone profiles.
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0,-0O, Spectroscopy

Greenblatt et al., [1990] only data in & SRR P VRN AR S SN
UV/VIS. UV data needed for spectral ¢ '~ t ]
fitting. ESC ]
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TOA Solar spectral irradiance

High resolution solar spectral
irradiance would be very useful in
analyzing atmospheric trace gases:

e Solar lines are source of accurate
wavelength calibration.

 Better characterization of the Ring effect.

» Improved knowledge of instrument slit

functions.

 Correction for spectral undersampling.

» Photochemistry of Schumann-Runge

system.

*Requirements:
Range: 240-1000 nm
FWHM: 0.01 nm

Ideal FTS Space Shuttle experiment.
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Summary

Spectroscopy of gases observed in UV/VIS are in pretty good shape.
Their uncertainty is not a significant contribution to measurement error.

Some of these gases could use the same treatment given by Orphal
[2001] in his review of O, and NO.,,.

Measurements using standard techniques (e.g. FTS) are needed and
should be applied to all space missions to insure consistent data sets.

Spectroscopy of gases measurable by reflected radiation in NIR was
not discussed but should be reviewed.

Aerosols are being routinely observed in UV/VIS. Spectroscopy of
various types needs further study (e.g. index of refraction).
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